12142

GPU Passthrough Performance: A Comparison of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL Applications

John Paul Walters, Andrew J. Younge, Dong-In Kang, Ke-Thia Yao, Mikyung Kang, Stephen P. Crago, Geoffrey C. Fox
Information Sciences Institute, University of Southern California, Arlington, VA 22203
International Conference on Cloud Computing, 2014
@article{walters2014gpu,

   title={GPU Passthrough Performance: A Comparison of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL Applications},

   author={Walters, John Paul and Younge, Andrew J and Kang, Dong-In and Yao, Ke-Thia and Kang, Mikyung and Crago, Stephen P and Fox, Geoffrey C},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

383

views

As more scientific workloads are moved into the cloud, the need for high performance accelerators increases. Accelerators such as GPUs offer improvements in both performance and power efficiency over traditional multi-core processors; however, their use in the cloud has been limited. Today, several common hypervisors support GPU passthrough, but their performance has not been systematically characterized. In this paper we show that low overhead GPU passthrough is achievable across 4 major hypervisors and two processor microarchitectures. We compare the performance of two generations of NVIDIA GPUs within the Xen, VMWare ESXi, and KVM hypervisors, and we also compare the performance to that of Linux Containers (LXC). We show that GPU passthrough to KVM achieves 98-100% of the base system’s performance across two architectures, while Xen and VMWare achieve 96-99% of the base systems performance, respectively. In addition, we describe several valuable lessons learned through our analysis and share the advantages and disadvantages of each hypervisor/GPU passthrough solution.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1193 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: