Heterogeneous Computing for Solving System of the Linear Equations by the Conjugate Gradient Method

Eduard Bondarenko
Dept. of Applied Mathematics, Oles Honchar Dnipropetrovs’k National University, Dnipropetrovs’k, Ukraine
Dnipropetrovs’k National University, 2014

   title={Heterogeneous Computing for Solving System of the Linear Equations by the Conjugate Gradient Method},

   author={Bondarenko, Eduard},



Download Download (PDF)   View View   Source Source   



The main purpose of this work is to show the advantages of using various approaches of heterogeneous programming. The results were received on the example of solving the system of the linear equations by the conjugate gradient method. High-level and low-level technologies (OpenACC and CUDA respectively) were used to accelerate computations on the GPU. The results of the work are clearly reflect benefits of using the low-level technology CUDA. In this work several types of the heterogeneous computing was considered. The main difference of each type is an amount of the data that are processed on the graphic accelerators and central processing units. To get a clearer comparative overview for the acceleration of the computations on the CPU the OpenMP technology was used. With the exception of using GPU as acceleration unit another way to increase performance is shown in this paper.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1585 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

303 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: