12660

Design and Evaluation of Scalable Concurrent Queues for Many-Core Architectures

Thomas R. W. Scogland, Wu-chun Feng
Department of Computer Science, Virginia Tech
Virginia Polytechnic Institute & State University, Technical Report number: TR-14-03, 2014
@article{scogland2014design,

   title={Design and Evaluation of Scalable Concurrent Queues for Many-Core Architectures},

   author={Scogland, Thomas RW and Feng, Wu-chun},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

193

views

As core counts increase and as heterogeneity becomes more common in parallel computing, we face the prospect of programming hundreds or even thousands of concurrent threads in a single shared-memory system. At these scales, even highly-efficient concurrent algorithms and data structures can become bottlenecks, unless they are designed from the ground up with throughput as their primary goal. In this paper, we present three contributions: (1) a characterization of queue designs in terms of modern multi- and many-core architectures, (2) the design of a high-throughput concurrent FIFO queue for many-core architectures that avoids the bottlenecks common in modern queue designs, and (3) a thorough evaluation of concurrent queue throughput across CPU, GPU, and co-processor devices. Our evaluation shows that focusing on throughput, rather than progress guarantees, allows our queue to scale to as much as three orders of magnitude (1000X) faster than lock-free and combining queues on GPU platforms and two times (2X) faster on CPU devices. These results deliver critical insight into the design of data structures for highly concurrent systems: (1) progress guarantees do not guarantee scalability, and (2) allowing an algorithm to block can actually increase throughput.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1231 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: