12664

High Level High Performance Computing for Multitask Learning of Time-varying Models

Marco Signoretto, Emanuele Frandi, Zahra Karevan, Johan A. K. Suykens
ESAT-STADIUS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (BELGIUM)
Internal Report 14-127, ESAT-SISTA, KU Leuven (Leuven, Belgium), 2014
@article{signoretto2014high,

   title={High Level High Performance Computing for Multitask Learning of Time-varying Models},

   author={Signoretto, Marco and Frandi, Emanuele and Karevan, Zahra and Suykens, Johan AK},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

445

views

We propose an approach suitable to learn multiple time-varying models jointly and discuss an application in data-driven weather forecasting. The methodology relies on spectral regularization and encodes the typical multi-task learning assumption that models lie near a common low dimensional subspace. The arising optimization problem amounts to estimating a matrix from noisy linear measurements within a trace norm ball. Depending on the problem, the matrix dimensions as well as the number of measurements can be large. We discuss an algorithm that can handle large-scale problems and is amenable to parallelization. We then compare high level high performance implementation strategies that rely on JIT decorators. The approach enables, in particular, to offload computations to a GPU without hard-coding computationally intensive operations via a low-level language. As such, it allows for fast prototyping and therefore it is of general interest for developing and testing novel computational models.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472385958
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472385958
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => euKInxKT56tg1VnvKIUBgIYwNDo=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1968 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: