13344

Face Recognition: A Tutorial on Computational Aspects

Alexander Alling, Nathaniel Powers, Tolga Soyata
Dept. of Electrical and Computer Engineering, University of Rochester
University of Rochester, 2015

@article{alling2015face,

   title={Face Recognition: A Tutorial on Computational Aspects},

   author={Alling, Alexander and Powers, Nathaniel and Soyata, Tolga},

   year={2015}

}

Download Download (PDF)   View View   Source Source   

1334

views

Face recognition is a sophisticated problem requiring a significant commitment of computer resources. A modern GPU architecture provides a practical platform for performing face recognition in real time. The majority of the calculations of an eigenpicture implementation of face recognition are matrix multiplications. For this type of computation, a conventional computer GPU is capable of computing in tens of milliseconds data that a CPU requires thousands of milliseconds to process. In this chapter, we outline and examine the different components and computational requirements of a face recognition scheme implementing the Viola-Jones Face Detection Framework and an eigenpicture face recognition model. Face recognition can be separated into three distinct parts: face detection, eigenvector projection, and database search. For each, we provide a detailed explanation of the exact process along with an analysis of the computational requirements and scalability of the operation.
VN:F [1.9.22_1171]
Rating: 4.8/5 (5 votes cast)
Face Recognition: A Tutorial on Computational Aspects, 4.8 out of 5 based on 5 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1484853636
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1484853636
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => +N1vToV8McmYX/ikEErS1XqpEy0=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2134 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: