An Effective Model of CPU/GPU Collaborative Computing in GPU Clusters

Yue Gu, Jian-Hua Gu, Xing-She Zhou
Center for High Performance Computing, School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, P.R. China
Journal of Applied Science and Engineering, Vol. 17, No. 4, pp. 353362, 2014


Download Download (PDF)   View View   Source Source   



Remote procedure call (RPC) is a simple, transparent and useful paradigm for providing communication between two processes across a network. The compute unified device architecture (CUDA) programming toolkit and runtime enhance the programmability of the graphics processing unit (GPU) and make GPU more versatile in high performance computing. The current researches mainly focus on the acceleration of algorithms on a GPU or multiple GPUs on a single host. This paper proposes a CPU/GPU collaborative model which can transparently use remote CPU/GPU computing resources to accelerate the computation. The objective is to efficiently manage CPU/GPU resources in a cluster to achieve load balancing.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477119559
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477119559
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => cL9vUmAV0m5DP+QnXdIlcu/6UPA=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2033 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: