NBODY6++GPU: Ready for the gravitational million-body problem

Long Wang, Rainer Spurzem, Sverre Aarseth, Keigo Nitadori, Peter Berczik, M.B.N. Kouwenhoven, Thorsten Naab
Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871, Beijing, China
arXiv:1504.03687 [astro-ph.IM], (14 Apr 2015)

   title={NBODY6++GPU: Ready for the gravitational million-body problem},

   author={Wang, Long and Spurzem, Rainer and Aarseth, Sverre and Nitadori, Keigo and Berczik, Peter and Kouwenhoven, M.B.N. and Naab, Thorsten},






Download Download (PDF)   View View   Source Source   Source codes Source codes



Accurate direct N-body simulations help to obtain detailed information about the dynamical evolution of star clusters. They also enable comparisons with analytical models and Fokker-Planck or Monte-Carlo methods. NBODY6 is a well-known direct N-body code for star clusters, and NBODY6++ is the extended version designed for large particle number simulations by supercomputers. We present NBODY6++GPU, an optimized version of NBODY6++ with hybrid parallelization methods (MPI, GPU, OpenMP, and AVX/SSE) to accelerate large direct N-body simulations, and in particular to solve the million-body problem. We discuss the new features of the NBODY6++GPU code, benchmarks, as well as the first results from a simulation of a realistic globular cluster initially containing a million particles. For million-body simulations, NBODY6++GPU is 400-2000 times faster than NBODY6 with 320 CPU cores and 32 NVIDIA K20X GPUs. With this computing cluster specification, the simulations of million-body globular clusters including 5% primordial binaries require about an hour per half-mass crossing time.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477565503
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477565503
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => EJQ6AjLy41yzMyRSk5qEs6xaDDY=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2036 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: