Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms

Amani AlOnazi, David Keyes, Alexey Lastovetsky, Vladimir Rychkov
Extreme Computing Research Center, KAUST, Thuwal 23955-6900, Saudi Arabia
arXiv:1505.07630 [cs.DC], (28 May 2015)


   title={Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms},

   author={AlOnazi, Amani and Keyes, David and Lastovetsky, Alexey and Rychkov, Vladimir},






Download Download (PDF)   View View   Source Source   



Hardware-aware design and optimization is crucial in exploiting emerging architectures for PDE-based computational fluid dynamics applications. In this work, we study optimizations aimed at acceleration of OpenFOAM-based applications on emerging hybrid heterogeneous platforms. OpenFOAM uses MPI to provide parallel multi-processor functionality, which scales well on homogeneous systems but does not fully utilize the potential per-node performance on hybrid heterogeneous platforms. In our study, we use two OpenFOAM applications, icoFoam and laplacianFoam, both based on Krylov iterative methods. We propose a number of optimizations of the dominant kernel of the Krylov solver, aimed at acceleration of the overall execution of the applications on modern GPU-accelerated heterogeneous platforms. Experimental results show that the proposed hybrid implementation significantly outperforms the state-of-the-art implementation.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1488392003
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1488392003
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => HhMOOOi6XThSGElu/dusl6hEa5U=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2175 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: