RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles

Nicholas P. Bailey, Trond S. Ingebrigtsen, Jesper Schmidt Hansen, Arno A. Veldhorst, Lasse Bohling, Claire A. Lemarchand, Andreas E. Olsen, Andreas K. Bacher, Heine Larsen, Jeppe C. Dyre, Thomas B. Schroder
DNRF Center "Glass and Time", IMFUFA, Dept. of Sciences, Roskilde University
arXiv:1506.05094 [physics.comp-ph], (16 Jun 2015)

   title={RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles},

   author={Bailey, Nicholas P. and Ingebrigtsen, Trond S. and Hansen, Jesper Schmidt and Veldhorst, Arno A. and Bohling, Lasse and Lemarchand, Claire A. and Olsen, Andreas E. and Bacher, Andreas K. and Larsen, Heine and Dyre, Jeppe C. and Schroder, Thomas B.},






Download Download (PDF)   View View   Source Source   Source codes Source codes




RUMD is a general purpose, high-performance molecular dynamics (MD) simulation package running on graphical processing units (GPU’s). RUMD addresses the challenge of utilizing the many-core nature of modern GPU hardware when simulating small to medium system sizes (roughly from a few thousand up to hundred thousand particles). It has a performance that is comparable to other GPU-MD codes at large system sizes and substantially better at smaller sizes. RUMD is open-source and consists of a library written in C++ and the CUDA extension to C, an easy-to-use Python interface, and a set of tools for set-up and post-simulation data analysis. The paper describes RUMD’s main features, optimizations and performance benchmarks.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477286064
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477286064
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 42Oif6iXTNf2K8GB7yQqs7ojl60=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2033 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: