Toward GPU Accelerated Data Stream Processing

Marcus Pinnecke, David Broneske, Gunter Saake
Institute for Technical and Business Information Systems, University of Magdeburg, Germany
27th GI-Workshop on Foundations of Databases, 2015

   title={Toward GPU Accelerated Data Stream Processing},

   author={Pinnecke, Marcus and Broneske, David and Saake, Gunter},



Download Download (PDF)   View View   Source Source   



In recent years, the need for continuous processing and analysis of data streams has increased rapidly. To achieve high throughput-rates, stream-applications make use of operator-parallelization, batching-strategies and distribution. Another possibility is to utilize co-processors capabilities per operator. Further, the database community noticed, that a column-oriented architecture is essential for efficient co-processing, since the data transfer overhead is smaller compared to transferring whole tables. However, current systems still rely on a row-wise architecture for stream processing, because it requires data structures for high velocity. In contrast, stream portions are in rest while being bound to a window. With this, we are able to alter the per-window event representation from row to column orientation, which will enable us to exploit GPU acceleration. To provide general-purpose GPU capabilities for stream processing, the varying window sizes lead to challenges. Since very large windows cannot be passed directly to the GPU, we propose to split the variable-length windows into fixed-sized window portions. Further, each such portion has a column-oriented event representation. In this paper, we present a time and space efficient, data corruption free concept for this task. Finally, we identify open research challenges related to co-processing in the context of stream processing.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477409905
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477409905
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => VuojMLrK0uQmXEq/dk8mX+onKtM=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2034 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: