Multiple String Matching on a GPU using CUDAs

Charalampos S. Kouzinopoulos, Panagiotis D. Michailidis, Konstantinos G. Margaritis
Department of Balkan, Slavic and Oriental Studies, University of Macedonia
Scalable Computing: Practice and Experience, Vol 16, No 2, 2015

   title={Multiple String Matching on a GPU using CUDAs},

   author={Kouzinopoulos, Charalampos S and Michailidis, Panagiotis D and Margaritis, Konstantinos G},

   journal={Scalable Computing: Practice and Experience},





Download Download (PDF)   View View   Source Source   



Multiple pattern matching algorithms are used to locate the occurrences of patterns from a finite pattern set in a large input string. Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG, five of the most well known algorithms for multiple matching require an increased computing power, particularly in cases where large-size datasets must be processed, as is common in computational biology applications. Over the past years, Graphics Processing Units (GPUs) have evolved to powerful parallel processors outperforming CPUs in scientific applications. This paper evaluates the speedup of the basic parallel strategy and the different optimization strategies for parallelization of Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG algorithms on a GPU.
VN:F [1.9.22_1171]
Rating: 3.4/5 (5 votes cast)
Multiple String Matching on a GPU using CUDAs, 3.4 out of 5 based on 5 ratings

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477080520
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477080520
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => q2qzsICEzU+6oi7JBqpU7mLMkKs=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: