A Parallel Framework for Parametric Maximum Flow Problems in Image Segmentation

Vlad Olaru, Mihai Florea, Cristian Sminchisescu
Institute of Mathematics of the Romanian Academy
arXiv:1509.06004 [cs.CV], (20 Sep 2015)

   title={A Parallel Framework for Parametric Maximum Flow Problems in Image Segmentation},

   author={Olaru, Vlad and Florea, Mihai and Sminchisescu, Cristian},






This paper presents a framework that supports the implementation of parallel solutions for the widespread parametric maximum flow computational routines used in image segmentation algorithms. The framework is based on supergraphs, a special construction combining several image graphs into a larger one, and works on various architectures (multi-core or GPU), either locally or remotely in a cluster of computing nodes. The framework can also be used for performance evaluation of parallel implementations of maximum flow algorithms. We present the case study of a state-of-the-art image segmentation algorithm based on graph cuts, Constrained Parametric Min-Cut (CPMC), that uses the parallel framework to solve parametric maximum flow problems, based on a GPU implementation of the well-known push-relabel algorithm. Our results indicate that real-time implementations based on the proposed techniques are possible.
VN:F [1.9.22_1171]
Rating: 5.0/5 (2 votes cast)
A Parallel Framework for Parametric Maximum Flow Problems in Image Segmentation, 5.0 out of 5 based on 2 ratings

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477677532
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477677532
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 1r6yMV26jlx/13qfCmxOO1V2BDs=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2038 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: