A Survey of CUDA-based Multidimensional Scaling on GPU Architecture

Hasmik Osipyan, Martin Krulis, Stephane Marchand-Maillet
National Polytechnic University of Armenia, Yerevan, Armenia
Imperial College Computing Student Workshop (ICCSW 2015), 2015

   title={A Survey of CUDA-based Multidimensional Scaling on GPU Architecture},

   author={Osipyan, Hasmik and Kruli{v{s}}, Martin and Marchand-Maillet, St{‘e}phane},

   booktitle={OASIcs-OpenAccess Series in Informatics},



   organization={Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik}


Download Download (PDF)   View View   Source Source   



The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction which is defined as a process of mapping data from high-dimensional space into low-dimensional. One of the most popular methods for handling this problem is multidimensional scaling. Due to the technological advances, the dimensionality of the input data as well as the amount of processed data is increasing steadily but the requirement of processing these data within a reasonable time frame still remains an open problem. Recent development in graphics hardware allows to perform generic parallel computations on powerful hardware and provides an opportunity to solve many time-constrained problems in both graphical and non-graphical domain. The purpose of this survey is to describe and analyze recent implementations of multidimensional scaling algorithms on graphics processing units and present the applicability of these algorithms on such architectures based on the experimental results which show a decrease of execution time for multi-level approaches.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
A Survey of CUDA-based Multidimensional Scaling on GPU Architecture, 5.0 out of 5 based on 1 rating

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477223868
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477223868
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 2QdplnH1MshQhIINT1GxlxgVA5Q=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2032 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: