Approximation of BEM matrices using GPGPUs

Steffen Borm, Sven Christophersen
Universitat Kiel
arXiv:1510.07244 [cs.MS], (25 Oct 2015)

   title={Approximation of BEM matrices using GPGPUs},

   author={Borm, Steffen and Christophersen, Sven},






Download Download (PDF)   View View   Source Source   



The efficiency of boundary element methods depends crucially on the time required for setting up the stiffness matrix. The far-field part of the matrix can be approximated by compression schemes like the fast multipole method or $mathcal{H}$-matrix techniques. The near-field part is typically approximated by special quadrature rules like the Sauter-Schwab technique that can handle the singular integrals appearing in the diagonal and near-diagonal matrix elements. Since computing one element of the matrix requires only a small amount of data but a fairly large number of operations, we propose to use GPUs to handle vectorizable portions of the computation: near-field computations are ideally suited for vectorization and can therefore be handled very well by GPUs. Modern far-field compression schemes can be split into a small adaptive portion that exhibits divergent control flows and is handled by the CPU and a vectorizable portion that can again be sent to GPUs. We propose a hybrid algorithm that splits the computation into tasks for CPUs and GPUs. Our method presented in this article is able to speedup the setup time of boundary integral operators by a significant factor of 19-30 for both the Laplace and the Helmholtz equation in 3D when using two consumer GPGPUs compared to a quad-core CPU.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477352171
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477352171
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => wYbR5M6lOcaPq8+rTSFVaSQEsIA=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2033 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: