Fast OBJ file importing and parsing in CUDA

Aidan L. Possemiers, Ickjai Lee
James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
Computational Visual Media, Volume 1, Issue 3, pp 229-238, 2015

   title={Fast OBJ file importing and parsing in CUDA},

   author={Possemiers, Aidan L and Lee, Ickjai},

   journal={Computational Visual Media},







Download Download (PDF)   View View   Source Source   



Alias-Wavefront OBJ meshes are a common text file type for transferring 3D mesh data between applications made by different vendors. However, as the mesh complexity gets higher and denser, the files become larger and slower to import. This paper explores the use of GPUs to accelerate the importing and parsing of OBJ files by studying file read-time, runtime, and load resistance. We propose a new method of reading and parsing that circumvents GPU architecture limitations and improves performance, seeing the new GPU method outperforms CPU methods with a 6x – 8x speedup. When running on a heavily loaded system, the new method only received an 80% performance hit, compared to the 160% that the CPU methods received. The loaded GPU speedup compared to unloaded CPU methods was 3.5x, and, when compared to loaded CPU methods, 8x. These results demonstrate that the time is right for further research into the use of data-parallel GPU acceleration beyond that of computer graphics and high performance computing.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1476991993
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1476991993
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => V0gaYtTPvNT2J9KO99vt2+Cjrh4=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2033 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: