MapGraph: A High Level API for Fast Development of High Performance Graph Analytics on GPUs

Zhisong Fu, Michael Personick, Bryan Thompson
ACM SIGMOD International Conference on Management of Data, 2014

   title={MapGraph: A High Level API for Fast Development of High Performance Graph Analytics on GPUs},

   author={Fu, Zhisong and Personick, Michael and Thompson, Bryan}


High performance graph analytics are critical for a long list of application domains. In recent years, the rapid advancement of many-core processors, in particular graphical processing units (GPUs), has sparked a broad interest in developing high performance parallel graph programs on these architectures. However, the SIMT architecture used in GPUs places particular constraints on both the design and implementation of the algorithms and data structures, making the development of such programs difficult and time-consuming. We present MapGraph, a high performance parallel graph programming framework that delivers up to 3 billion Traversed Edges Per Second (TEPS) on a GPU. MapGraph provides a high-level abstraction that makes it easy to write graph programs and obtain good parallel speedups on GPUs. To deliver high performance, MapGraph dynamically chooses among different scheduling strategies depending on the size of the frontier and the size of the adjacency lists for the vertices in the frontier. In addition, a Structure Of Arrays (SOA) pattern is used to ensure coalesced memory access. Our experiments show that, for many graph analytics algorithms, an implementation, with our abstraction, is up to two orders of magnitude faster than a parallel CPU implementation and is comparable to state-of-the-art, manually optimized GPU implementations. In addition, with our abstraction, new graph analytics can be developed with relatively little effort.
VN:F [1.9.22_1171]
Rating: 5.0/5 (4 votes cast)
MapGraph: A High Level API for Fast Development of High Performance Graph Analytics on GPUs, 5.0 out of 5 based on 4 ratings

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477305145
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477305145
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => pFDYrdjXVbzXosaFts/o8Fra+2Y=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2032 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: