15227

Faster GPU Based Genetic Programming Using A Two Dimensional Stack

Darren M. Chitty
Department of Computer Science, University of Bristol, Merchant Venturers Bldg, Woodland Road, BRISTOL BS8 1UB
arXiv:1601.00221 [cs.DC], (2 Jan 2016)
@article{chitty2016faster,

   title={Faster GPU Based Genetic Programming Using A Two Dimensional Stack},

   author={Chitty, Darren M.},

   year={2016},

   month={jan},

   archivePrefix={"arXiv"},

   primaryClass={cs.DC}

}

Download Download (PDF)   View View   Source Source   

382

views

Genetic Programming (GP) is a computationally intensive technique which also has a high degree of natural parallelism. Parallel computing architectures have become commonplace especially with regards Graphics Processing Units (GPU). Hence, versions of GP have been implemented that utilise these highly parallel computing platforms enabling significant gains in the computational speed of GP to be achieved. However, recently a two dimensional stack approach to GP using a multi-core CPU also demonstrated considerable performance gains. Indeed, performances equivalent to or exceeding that achieved by a GPU were demonstrated. This paper will demonstrate that a similar two dimensional stack approach can also be applied to a GPU based approach to GP to better exploit the underlying technology. Performance gains are achieved over a standard single dimensional stack approach when utilising a GPU. Overall, a peak computational speed of over 55 billion Genetic Programming Operations per Second are observed, a two fold improvement over the best GPU based single dimensional stack approach from the literature.
VN:F [1.9.22_1171]
Rating: 5.0/5 (2 votes cast)
Faster GPU Based Genetic Programming Using A Two Dimensional Stack, 5.0 out of 5 based on 2 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475088486
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475088486
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => Z0PYDceLY3Klx+Jv/YnkAzkIB2w=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2001 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: