15394

Fast, Realistic Terrain Synthesis

Justin Crause
Department of Computer Science, University of Cape Town
University of Cape Town, 2015

@article{crause2015fast,

   title={Fast, Realistic Terrain Synthesis},

   author={Crause, Justin},

   year={2015}

}

Download Download (PDF)   View View   Source Source   

334

views

The authoring of realistic terrain models is necessary to generate immersive virtual environments for computer games and film visual effects. However, creating these landscapes is difficult – it usually involves an artist spending many hours sculpting a model in a 3D design program. Specialised terrain generation programs exist to rapidly create artificial terrains, such as Bryce (2013) and Terragen (2013). These make use of complex algorithms to pseudo-randomly generate the terrains, which can then be exported into a 3D editing program for fine tuning. Height-maps are a 2D datastructure, which stores elevation values, and can be used to represent terrain data. They are also a common format used with terrain generation and editing systems. Height-maps share the same storage design as image files, as such they can be viewed like any picture and image transformation algorithms can be applied to them. Early techniques for generating terrains include fractal generation and physical simulation. These methods proved difficult to use as the algorithms were manipulated with a set of parameters. However, the outcome from changing the values is not known, which results in the user changing values over several iterations to produce their desired terrain. An improved technique brings in a higher degree of user control as well as improved realism, known as texture-based terrain synthesis. This borrows techniques from texture synthesis, which is the process of algorithmically generating a larger image from a smaller sample image. Texture-based terrain synthesis makes use or real-world terrain data to produce highly realistic landscapes, which improves upon previous techniques. Recent work in texture-based synthesis has focused on improving both the realism and user control, through the use of sketching interfaces. We present a patch-based terrain synthesis system that utilises a user sketch to control the location of desired terrain features, such as ridges and valleys. Digital Elevation Models (DEMs) of real landscapes are used as exemplars, from which candidate patches of data are extracted and matched against the user’s sketch. The best candidates are merged seamlessly into the final terrain. Because real landscapes are used the resulting terrain appears highly realistic. Our research contributes a new version of this approach that employs multiple input terrains and acceleration using a modern Graphics Processing Unit (GPU). The use of multiple inputs increases the candidate pool of patches and thus the system is capable of producing more varied terrains. This addresses the limitation where supplying the wrong type of input terrain would fail to synthesise anything useful, for example supplying the system with a mountainous DEM and expecting deep valleys in the output. We developed a hybrid multithreaded CPU and GPU implementation that achieves a 45 times speedup.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481241700
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481241700
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 2bHT8CQZKAIxewiq2b9iJ6pQYrQ=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2081 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: