15625

A mixed precision semi-Lagrangian algorithm and its performance on accelerators

Lukas Einkemmer
University of Innsbruck, Austria
arXiv:1603.07008 [cs.MS], (22 Mar 2016)
@article{einkemmer2016mixed,

   title={A mixed precision semi-Lagrangian algorithm and its performance on accelerators},

   author={Einkemmer, Lukas},

   year={2016},

   month={mar},

   archivePrefix={"arXiv"},

   primaryClass={cs.MS}

}

Download Download (PDF)   View View   Source Source   

280

views

In this paper we propose a mixed precision algorithm in the context of the semi-Lagrangian discontinuous Galerkin method. The performance of this approach is evaluated on a traditional dual socket workstation as well as on a Xeon Phi and an NVIDIA K80. We find that the mixed precision algorithm can be implemented efficiently on these architectures. This implies that, in addition to the considerable reduction in memory, a substantial increase in performance can be observed as well. Moreover, we discuss the relative performance of our implementations.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474750349
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474750349
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => SSK4YKs0ZWWQ5XU7kn5x1rjEqGo=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1995 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: