15739

LightScan: Faster Scan Primitive on CUDA Compatible Manycore Processors

Yongchao Liu, Srinivas Aluru
School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, USA
arXiv:1604.04815 [cs.DC], (17 Apr 2016)
@article{liu2016lightscan,

   title={LightScan: Faster Scan Primitive on CUDA Compatible Manycore Processors},

   author={Liu, Yongchao and Aluru, Srinivas},

   year={2016},

   month={apr},

   archivePrefix={"arXiv"},

   primaryClass={cs.DC}

}

Scan (or prefix sum) is a fundamental and widely used primitive in parallel computing. In this paper, we present LightScan, a faster parallel scan primitive for CUDA-enabled GPUs, which investigates a hybrid model combining intra-block computation and inter-block communication to perform a scan. Our algorithm employs warp shuffle functions to implement fast intra-block computation and takes advantage of globally coherent L2 cache and the associated parallel thread execution (PTX) assembly instructions to realize lightweight inter-block communication. Performance evaluation using a single Tesla K40c GPU shows that LightScan outperforms existing GPU algorithms and implementations, and yields a speedup of up to 2.1, 2.4, 1.5 and 1.2 over the leading CUDPP, Thrust, ModernGPU and CUB implementations running on the same GPU, respectively. Furthermore, LightScan runs up to 8.9 and 257.3 times faster than Intel TBB running on 16 CPU cores and an Intel Xeon Phi 5110P coprocessor, respectively. Source code of LightScan is available.
VN:F [1.9.22_1171]
Rating: 3.4/5 (5 votes cast)
LightScan: Faster Scan Primitive on CUDA Compatible Manycore Processors, 3.4 out of 5 based on 5 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474781318
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474781318
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => gD6caiCdDons2miRCL63nneceAc=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1996 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: