15763

Investigating performance portability of a highly scalable particle-in-cell simulation code on various multi-core architectures

Benjamin Worpitz
Technische Universitat Dresden, Department of Computer Science, Institute of Computer Engineering
Technische Universitat Dresden, 2015
@phdthesis{worpitz2015investigating,

   title={Investigating performance portability of a highly scalable particle-in-cell simulation code on various multi-core architectures},

   author={Worpitz, Benjamin},

   year={2015},

   school={Technische Universit{"a}t Dresden}

}

The alpaka library defines and implements an abstract hierarchical redundant parallelism model. This model exploits parallelism and memory hierarchies on a node at all levels available in current hardware. This allows to achieve portability of performant codes across various types of accelerators by ignoring specific unsupported levels and utilizing only the ones supported on a specific accelerator. All hardware types (multi- and many-core CPUs, GPUs and other accelerators) are treated and can be programmed in the same way. The C++ template interface provided allows for straightforward extension of the library to support other accelerators and specialization of its internals for optimization.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Investigating performance portability of a highly scalable particle-in-cell simulation code on various multi-core architectures, 5.0 out of 5 based on 1 rating

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474922806
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474922806
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => z82Z62xgy5Uop/U263hGUi/aCpQ=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1997 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: