16814

nmfgpu4R: GPU-Accelerated Computation of the Non-Negative Matrix Factorization (NMF) Using CUDA Capable Hardware

Sven Koitka, Christoph M. Friedrich
Department of Computer Science, University of Applied Sciences and Arts Dortmund (FHDO), Emil-Figge-Strasse 42, 44227 Dortmund, Germany
The R Journal, 2016

@article{koitka2016nmfgpu4r,

   title={nmfgpu4R: GPU-Accelerated Computation of the Non-Negative Matrix Factorization (NMF) Using CUDA Capable Hardware},

   author={Koitka, Sven and Friedrich, Christoph M},

   year={2016}

}

In this work, a novel package called nmfgpu4R is presented, which offers the computation of Non-negative Matrix Factorization (NMF) on Compute Unified Device Architecture (CUDA) platforms within the R environment. Benchmarks show a remarkable speed-up in terms of time per iteration by utilizing the parallelization capabilities of modern graphics cards. Therefore the application of NMF gets more attractive for real-world sized problems because the time to compute a factorization is reduced by an order of magnitude.
VN:F [1.9.22_1171]
Rating: 4.0/5 (6 votes cast)
nmfgpu4R: GPU-Accelerated Computation of the Non-Negative Matrix Factorization (NMF) Using CUDA Capable Hardware, 4.0 out of 5 based on 6 ratings

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1487932585
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1487932585
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => LlQlOZ/5SBpC4TrKtrbcxoo6rNs=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2173 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: