16914

An N log N Parallel Fast Direct Solver for Kernel Matrices

Chenhan D. Yu, William B. March, George Biros
Department of Computer Science, The University of Texas at Austin, Austin, Texas, USA
arXiv:1701.02324 [cs.DC], (9 Jan 2017)

@article{yu2017parallel,

   title={An $N log N$ Parallel Fast Direct Solver for Kernel Matrices},

   author={Yu, Chenhan D. and March, William B. and Biros, George},

   year={2017},

   month={jan},

   archivePrefix={"arXiv"},

   primaryClass={cs.DC}

}

Kernel matrices appear in machine learning and non-parametric statistics. Given N points in d dimensions and a kernel function that requires $mathcal{O}(d)$ work to evaluate, we present an $mathcal{O}(dNlog N)$-work algorithm for the approximate factorization of a regularized kernel matrix, a common computational bottleneck in the training phase of a learning task. With this factorization, solving a linear system with a kernel matrix can be done with $mathcal{O}(Nlog N)$ work. Our algorithm only requires kernel evaluations and does not require that the kernel matrix admits an efficient global low rank approximation. Instead our factorization only assumes low-rank properties for the off-diagonal blocks under an appropriate row and column ordering. We also present a hybrid method that, when the factorization is prohibitively expensive, combines a partial factorization with iterative methods. As a highlight, we are able to approximately factorize a dense 11M*11M kernel matrix in 2 minutes on 3,072 x86 "Haswell" cores and a 4.5M*4.5M matrix in 1 minute using 4,352 "Knights Landing" cores.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1487867273
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1487867273
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => t8J4PvQnjWQ/Zy4q8EDrPE7hE6k=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2173 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: