2994

A Domain-Specific Approach To Heterogeneous Parallelism

Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R. Atreya, Kunle Olukotun
Pervasive Parallelism Laboratory, Stanford University
Proceedings of the 16th ACM symposium on Principles and practice of parallel programming, 2011, p.35-46
@conference{chafi2011domain,

   title={A domain-specific approach to heterogeneous parallelism},

   author={Chafi, H. and Sujeeth, A.K. and Brown, K.J. and Lee, H.J. and Atreya, A.R. and Olukotun, K.},

   booktitle={Proceedings of the 16th ACM symposium on Principles and practice of parallel programming},

   pages={35–46},

   year={2011},

   organization={ACM}

}

Download Download (PDF)   View View   Source Source   

217

views

Exploiting heterogeneous parallel hardware currently requires mapping application code to multiple disparate programming models. Unfortunately, general-purpose programming models available today can yield high performance but are too low-level to be accessible to the average programmer. We propose leveraging domainspecific languages (DSLs) to map high-level application code to heterogeneous devices. To demonstrate the potential of this approach we present OptiML, a DSL for machine learning. OptiML programs are implicitly parallel and can achieve high performance on heterogeneous hardware with no modification required to the source code. For such a DSL-based approach to be tractable at large scales, better tools are required for DSL authors to simplify language creation and parallelization. To address this concern, we introduce Delite, a system designed specifically for DSLs that is both a framework for creating an implicitly parallel DSL as well as a dynamic runtime providing automated targeting to heterogeneous parallel hardware. We show that OptiML running on Delite achieves single-threaded, parallel, and GPU performance superior to explicitly parallelized MATLAB code in nearly all cases.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1218 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: