A 57mW embedded mixed-mode neuro-fuzzy accelerator for intelligent multi-core processor

Jinwook Oh, Junyoung Park, Gyeonghoon Kim, Seungjin Lee, Hoi-Jun Yoo
KAIST, Daejeon, South Korea
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011


   title={A 57mW embedded mixed-mode neuro-fuzzy accelerator for intelligent multi-core processor},

   author={Oh, J. and Park, J. and Kim, G. and Lee, S. and Yoo, H.J.},

   booktitle={Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International},





Source Source   



Artificial intelligence (Al) functions are becoming important in smartphones, portable game consoles, and robots for such intelligent applications as object detection, recognition, and human-computer interfaces (HCI). Most of these functions are realized in software with neural networks (NN) and fuzzy systems (FS), but due to power and speed limitations, a hardware solution is needed. For example, software implementations of object-recognition algorithms like SIFT consume ~10W and ~1s delay even on a 2.4GHz PC CPU. Previously, GPGPUs or ASICs were used to realize Al functions. But GPGPUs just emulate NN/FS with many processing elements to speed up the software, while still consuming a large amount of power. On the other hand, low-power ASICs have been mostly dedicated stand-alone processors, not suitable to be ported into many different systems. This paper presents a portable embedded neuro-fuzzy accelerator: the intelligent reconfigurable integrated system (IRIS), which realizes low power consumption and high-speed recognition, prediction and optimization for Al applications.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1487819665
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1487819665
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => KYCdZbq7RMWfkZJqZgthU6hT170=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2173 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: