6933

CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction application

Guoqing Lei, Yong Dou, Wen Wan, Fei Xia, Rongchun Li, Meng Ma, Dan Zou
National Laboratory for Parallel & Distributed Processing, Department of Computer Science, National University of Defense Technology, Changsha, 410073, China
BMC Genomics, 13(Suppl 1):S14, 2012

@article{lei2012cpu,

   title={CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction application},

   author={Lei, Guoqing and Dou, Yong and Wan, Wen and Xia, Fei and Li, Rongchun and Ma, Meng and Zou, Dan},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

936

views

BACKGROUND: Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. RESULTS: In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. CONCLUSIONS: Speedup of 15.93x over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: