CUDA implementation of the algorithm for simulating the epidemic spreading over large networks

Matija Sosic, Mile Sikic
Faculty of Electrical Engineering and Computing, Zagreb, Croatia
MIPRO, 2012

   title={CUDA implementation of the algorithm for simulating the epidemic spreading over large networks},

   author={v{S}}o{v{s}}i{‘c}, M. and {v{S}}iki{‘c}, M.},

   journal={35. me{dj}unarodni skup MIPRO},



Download Download (PDF)   View View   Source Source   



For some years now, there has been an increasing interest in modeling and analyzing the spread of epidemics in both human and computer networks. The obvious advantage a computer simulation of the epidemic spread offers is that the answer is delivered in short time and the number of hosts included in simulation can approach their real-world number. This paper presents a CUDA (Compute Unified Device Architecture) technology based implementation of the simulation algorithm for modeling of the epidemic spread on a network. Spreading of the epidemics over the network is modeled using discrete SIR (Susceptible – Infected – Recovered) model. This implementation offers selection of a starting node and monitoring of the epidemic spread in each cycle. Compared to a common CPU implementation, the CUDA version achieves about 10x faster execution time in the worst case. That speed up is of great significance when running tests on large networks. The implementation was tested on real social networks consisting of more than 5 million nodes. Hence, we believe it can be of a practical value in analysis of the epidemic spreading over large networks. To the best of our knowledge, this is only implementation of SIR model on CUDA.
VN:F [1.9.22_1171]
Rating: 4.6/5 (7 votes cast)
CUDA implementation of the algorithm for simulating the epidemic spreading over large networks, 4.6 out of 5 based on 7 ratings

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: