7996

High-Level Manipulation of OpenCL-Based Subvectors and Submatrices

Karl Rupp
Institute for Analysis and Scientific Computing, TU Wien
Procedia Computer Science, Volume 9, Pages 1857-1866, 2012
@article{rupp2012high,

   title={High-Level Manipulation of OpenCL-Based Subvectors and Submatrices},

   author={Rupp, K.},

   journal={Procedia Computer Science},

   volume={9},

   pages={1857–1866},

   year={2012},

   publisher={Elsevier}

}

Download Download (PDF)   View View   Source Source   

379

views

High-level C++ proxies for the convenient manipulation of subvectors and submatrices on OpenCL-enabled devices are introduced. It is demonstrated that the programming convenience of standard host-based code can be retained using native C++ language features only, even if massively parallel computing architectures such as graphics processing units are employed. The required modifications of the underlying OpenCL kernels are discussed and a case study of an implementation of the QR-factorization is given. Benchmark results confirm that the convenience of purely CPU-based libraries can be preserved without sacrificing performance of OpenCL-enabled devices, particularly graphics processing units.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

193 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1329 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: