GPU-to-GPU and Host-to-Host multipattern string matching on a GPU

Xinyan Zha, Sartaj Sahni
Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611
IEEE Transactions on Computers, 2012
@misc{zha2012gpu,

   title={GPU-to-GPU and Host-to-Host multipattern string matching on a GPU},

   author={Zha, X. and Sahni, S.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   
We develop GPU adaptations of the Aho-Corasick and multipattern Boyer-Moore string matching algorithms for the two cases GPU-to-GPU (input is initially in GPU memory and the output is left in GPU memory) and host-to-host (input and output are in the memory of the host CPU). For the GPU-to-GPU case, we consider several refinements to a base GPU implementation and measure the performance gain from each refinement. For the host-to-host case, we analyze two strategies to communicate between the host and the GPU and show that one is optimal with respect to run time while the other requires less device memory. Experiments conducted on an NVIDIA Tesla GT200 GPU that has 240 cores running off of a Xeon 2.8GHz quad-core host CPU show that, for the GPU-to-GPU case, our Aho-Corasick GPU adaptation achieves a speedup between 8.5 and 9.5 relative to a single-thread CPU implementation and between 2.4 and 3.2 relative to the best multithreaded implementation. For the host-to-host case, the GPU AC code achieves a speedup of 3.1 relative to a single-threaded CPU implementation. However, the GPU is unable to deliver any speedup relative to the best multithreaded code running on the quad-core host. In fact, the measured speedups for the latter case ranged between 0.74 and 0.83.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org