8008

Power Management for GPU-CPU Heterogeneous Systems

Xue Li
University of Tennessee, Knoxville
University of Tennessee, 2011
@article{li2011power,

   title={Power Management for GPU-CPU Heterogeneous Systems},

   author={Li, X.},

   year={2011}

}

Download Download (PDF)   View View   Source Source   

435

views

In recent years, GPU-CPU heterogeneous architectures have been increasingly adopted in high performance computing, because of their capabilities of providing high computational throughput. However, current research focuses mainly on the performance aspects of GPU-CPU architectures, while improving the energy efficiency of such systems receives much less attention. There are few existing efforts that try to lower the energy consumption of GPU-CPU architectures, but they address either GPU or CPU in an isolated manner and thus cannot achieve maximized energy savings. In this paper, we propose GreenGPU, a holistic energy management framework for GPU-CPU heterogeneous architectures. Our solution features a two-tier design. In the first tier, GreenGPU dynamically splits and distributes workloads to GPU and CPU based on the workload characteristics, such that both sides can finish approximately at the same time. As a result, the energy wasted on staying idle and waiting for the slower side to finish is minimized. In the second tier, GreenGPU dynamically throttles the frequencies of GPU cores and memory in a coordinated manner, based on their utilization, for maximized energy savings with only marginal performance degradation. Likewise, the frequency and voltage of the CPU are scaled similarly. We implement GreenGPU using the CUDA framework on a real physical testbed with Nvidia GeForce GPUs and AMD Phenom II CPUs. Experiment results with standard Rodinia benchmarks show that GreenGPU achieves 21.04% average energy savings and outperform several well-designed baselines.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

166 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1272 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: