8114

Perceptually Optimized Real-Time Computer Graphics

Jeffrey Smith
Department of Computer Science, Kate Gleason College of Engineering
Kate Gleason College of Engineering, 2012
@article{smith2012perceptually,

   title={Perceptually optimized real-time computer graphics},

   author={Smith, J.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

484

views

Perceptual optimization, the application of human visual perception models to remove imperceptible components in a graphics system, has been proven effective in achieving significant computational speedup. Previous implementations of this technique have focused on spatial level of detail reduction, which typically results in noticeable degradation of image quality. This thesis introduces refresh rate modulation (RRM), a novel perceptual optimization technique that produces better performance enhancement while more effectively preserving image quality and resolving static scene elements in full detail. In order to demonstrate the effectiveness of this technique, a graphics framework has been developed that interfaces with eye tracking hardware to take advantage of user fixation data in real-time. Central to the framework is a high-performance GPGPU ray-tracing engine written in OpenCL. RRM reduces the frequency with which pixels outside of the foveal region are updated by the ray-tracer. A persistent pixel buffer is maintained such that peripheral data from previous frames provides context for the foveal image in the current frame. Traditional optimization techniques have also been incorporated into the ray-tracer for improved performance. Applying the RRM technique to the ray-tracing engine results in a speedup of 2.27 (252 fps vs. 111 fps at 1080p) for the classic Whitted scene with reflection and transmission enabled. A speedup of 3.41 (140 fps vs. 41 fps at 1080p) is observed for a high-polygon scene that depicts the Stanford Bunny. A small pilot study indicates that RRM achieves these results with minimal impact to perceived image quality. A secondary investigation is conducted regarding the performance benefits of increasing physics engine error tolerance for bounding volume hierarchy based collision detection when the scene elements involved are in the user’s periphery. The open-source Bullet Physics Library was used to add accurate collision detection to the full resolution ray-tracing engine. For a scene with a static high-polygon model and 50 moving spheres, a speedup of 1.8 was observed for physics calculations. The development and integration of this subsystem demonstrates the extensibility of the graphics framework.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

169 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1280 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: