8205

An Optimized Parallel IDCT on Graphics Processing Units

Biao Wang, Mauricio Alvarez-Mesa, Chi Ching Chi, Ben Juurlink
Embedded Systems Architecture, Technische Universitat Berlin, Berlin, Germany
Tenth International Workshop Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar’12), 2012
@article{wang2012optimized,

   title={An Optimized Parallel IDCT on Graphics Processing Units},

   author={Wang, B. and Alvarez-Mesa, M. and Chi, C.C. and Juurlink, B.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

441

views

In this paper we present an implementation of the H.264/AVC Inverse Discrete Cosine Transform (IDCT) optimized for Graphics Processing Units (GPUs) using OpenCL. By exploiting that most of the input data of the IDCT for real videos are zero valued coefficients a new compacted data representation is created that allows for several optimizations. Experimental evaluations conducted on different GPUs show average speedups from 1.7x to 7.4x compared to an optimized singlethreaded SIMD CPU version.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

193 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1329 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: