8217

Massive parallelization of combinatorial statistical genetics analyses porting machine learning methods on general purpose graphics processing units (GPU)

Tony Kam-Thong
Aus Hull, Kanada
Technischen Universitat Berlin, 2012
@phdthesis{kam2012massive,

   title={Massive parallelization of combinatorial statistical genetics analyses porting machine learning methods on general purpose graphics processing units (GPU)},

   author={Kam-Thong, T.},

   year={2012},

   school={Universit{"a}tsbibliothek}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

526

views

Recent advances in sequencing technology and automated phenotyping render it possible to study the relationship between genotype and phenotype at an unprecedented level of detail. While mapping phenotypes to single loci in the genome is a standard technique in Statistical Genetics, the problem of epistasis search, that is mapping phenotypes to pairs of loci, remains computationally infeasible in practice. This is problematic, as epistatic interactions between loci are expected to contribute significantly to phenotypic variance. By making use of the computational power of graphics cards, we enable epistasis detection via linear and logistic regression on a single desktop machine. As the use of graphics processing units (GPUs) is becoming synonymous with an economical and ease-of-access parallel computing option, it is spawning many innovative projects in several fields of study. Our group has successfully developed new tools with the aim of using the multiple cores available on GPUs to solve the epistasis problem. A dedicated kernel code running on GPUs helps to unlock the parallel computational power of these devices and compute the statistical scores of all possible second order interactions. The GPU-bound programs have shown to outperform not only standard single CPU-core based approaches but also tools designed for multiple CPU cores by up to two orders of magnitude. The tools will be of great assistance to researchers intent on performing exhaustive epistasis searches. In particular, our implementations enable to conduct a systematic epistasis detection study on the large host of previously published Genome-wide association studies (GWAS) data, including Wellcome Trust Case Control Consortium (WTCCC). The vision of researchers employing no more than a single desktop computer to evaluate the statistical significance of interactions of biological inputs in the order of hundred of billions has become a reality. This will in turn help drive down costs and increase innovation in this field of study.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

127 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1188 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: