8340

Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms

Liang Men, Miaoqing Huang, John Gauch
Department of Computer Science and Computer Engineering, University of Arkansas
2012 International Workshop on Modern Accelerator Technologies for GIScience (MAT4GIScience 2012), 2012
@article{men2012accelerating,

   title={Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms},

   author={Men, L. and Huang, M. and Gauch, J.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

502

views

Image segmentation is a very important step in many GIS applications. Mean shift is an advanced and versatile technique for clustering-based segmentation, and is favored in many cases because it is non-parametric. However, mean shift is very computationally intensive compared with other simple methods such as k-means. In this work, we present a hybrid design of mean shift algorithm on a computer platform consisting of both CPUs and GPUs. By taking advantages of the massive parallelism and the advanced memory hierarchy on Nvidia’s Fermi GPU, the hybrid design achieves a 20x speedup compared with the pure CPU implementation when dealing with images bigger than 1024×1024 pixels.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

138 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1212 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: