Programming NVIDIA cards by means of transitive closure based parallelization algorithms

Marek Palkowski, Wlodzimierz Bielecki
Zachodniopomorski Uniwersytet Technologiczny, Katedra Inzynierii Oprogramowania, ul. Zolnierska 49, 71-210 Szczecin
Przeglad Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012, 2012


   title={Programming NVIDIA cards by means of transitive closure based parallelization algorithms},

   author={Palkowski, Marek and Bielecki, Wlodzimierz},



Download Download (PDF)   View View   Source Source   



Massively parallel processing is a type of computing that uses many separate CPUs or GPUs running in parallel to execute a single program. Because most computations are contained in program loops, automatic extraction of parallelism available in loops is extremely important for many-core systems. In this paper, we study speed-up and scalability of parallel code scanning synchronization-free slices and time partitions by means of a 960 CUDA Cores machine, Tesla S1070.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481152930
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481152930
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => W6vrIjTrZ+W5vzgS9KfonPI/NoY=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2080 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: