AeminiumGPU: An Intelligent Framework for GPU Programming

Alcides Fonseca, Bruno Cabral
University of Coimbra, Portugal
Facing the Multicore-Challenge III, 2012

   title={AE}miniumGPU: An Intelligent Framework for GPU Programming},

   author={Fonseca, A. and Cabral, B.},



Download Download (PDF)   View View   Source Source   Source codes Source codes




As a consequence of the immense computational power avail-able in GPUs, the usage of these platforms for running data-intensive general purpose programs has been increasing. Since memory and pro-cessor architectures of CPUs and GPUs are substantially different, pro-grams designed for each platform are also very different and often resort to a very distinct set of algorithms and data structures. Selecting be-tween the CPU or GPU for a given program is not easy as there are variations in the hardware of the GPU, in the amount of data, and in several other performance factors. AEminiumGPU is a new data-parallel framework for developing and run-ning parallel programs on CPUs and GPUs. AEminiumGPU programs are written in a Java using Map-Reduce primitives and are compiled into hybrid executables which can run in either platforms. Thus, the de-cision of which platform is going to be used for executing a program is delayed until run-time and automatically performed by the system using Machine-Learning techniques. Our tests show that AEminiumGPU is able to achieve speedups up to 65x and that the average accuracy of the platform selection algorithm, in choosing the best platform for executing a program, is above 92%.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1665 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: