Scalable GPU Acceleration of B-Spline Signal Processing Operations

Alexander Karantza
Department of Computer Engineering, Kate Gleason College of Engineering
Kate Gleason College of Engineering, 2012

   title={Scalable GPU Acceleration of B-Spline Signal Processing Operations},

   author={Karantza, A.},


   school={Rochester Institute of Technology}


Download Download (PDF)   View View   Source Source   



B-Splines are a useful tool in signal processing, and are widely used in the analysis of two and three-dimensional images. B-Splines provide a continuous representation of the signal, image, or volume, which is useful for interpolation, resampling, noise removal, and differentiation – all important steps in many signal processing algorithms. These splines are defined entirely by an array of coefficients that is roughly the same size as the original signal and of values in the same order of magnitude, making storage and representation trivial. What is not trivial, however, is the quick calculation and processing of those coefficients, especially for very large data. As technology improves in fields such as medical imaging, algorithms that use B-Splines will need to process increasingly higher resolution images and voxel volumes. New implementations are needed to make use of modern parallel architectures to keep these algorithms practical. This thesis presents a library for performing many common B-Splines operations in CUDA, the parallel programming framework for NVIDIA GPUs, and analyzes the considerations necessary when implementing a large-scale parallel version of such a well-established sequential algorithm. This library is meant to be used both by C++ programs as well as algorithms implemented in MATLAB without requiring significant changes. Significant speedups are obtained using this library to perform various common B-Spline image processing operations (as much as 30x for some), and the scalability limitations of the GPU implementation are addressed.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: