8460

High-precision Monte Carlo study of the three-dimensional XY model on GPU

Ti-Yen Lan, Yun-Da Hsieh, Ying-Jer Kao
Center of Theoretical Science and Department of Physics, National Taiwan University, Taipei 10607, Taiwan
arXiv:1211.0780 [cond-mat.stat-mech] (5 Nov 2012)
@article{2012arXiv1211.0780L,

   author={Lan}, T.-Y. and {Hsieh}, Y.-D. and {Kao}, Y.-J.},

   title={"{High-precision Monte Carlo study of the three-dimensional XY model on GPU}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1211.0780},

   primaryClass={"cond-mat.stat-mech"},

   keywords={Condensed Matter – Statistical Mechanics, Physics – Computational Physics},

   year={2012},

   month={nov},

   adsurl={http://adsabs.harvard.edu/abs/2012arXiv1211.0780L},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

716

views

We perform large-scale Monte Carlo simulations of the classical XY model on a three-dimensional $Ltimes L times L$ cubic lattice using the graphics processing unit (GPU). By the combination of Metropolis single-spin flip, over-relaxation and parallel-tempering methods, we simulate systems up to L=160. Performing the finite-size scaling analysis, we obtain estimates of the critical exponents for the three-dimensional XY universality class: $alpha=-0.01293(48)$ and $nu=0.67098(16)$. Our estimate for the correlation-length exponent $nu$, in contrast to previous theoretical estimates, agrees with the most recent experimental estimate $nu_{rm exp}=0.6709(1)$ at the superfluid transition of $^4$He in a microgravity environment.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472260174
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472260174
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => D99OgjmFNpWf2vd+FvG27Yb3mv0=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1967 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: