GPU Acceleration of Pyrosequencing Noise Removal

Yang Gao, Jason D. Bakos
Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
Symposium on Application Accelerators in High Performance Computing (SAAHPC), 2012

   title={GPU Acceleration of Pyrosequencing Noise Removal},

   author={Gao, Y. and Bakos, J.D.},

   booktitle={Application Accelerators in High Performance Computing (SAAHPC), 2012 Symposium on},





Download Download (PDF)   View View   Source Source   



Amplicon Noise [1], an updated version of Pyronoise [2], is a tool for removing noise from metagenomic data recorded by a 454 pyrosequencer. Amplicon Noise has shown to be effective in reducing overestimation of operational taxonomic units (OTUs) and chimera detection. Amplicon-Noise’s noise removal method relies on clustering a large set of short sequences read by the sequencer. The DNA sequencing algorithm requires the computation of O(n^2) pair wise distances using a global sequence alignment method. Each sequence consists of a few hundred base pairs and a typical dataset contains 104 sequences, making the clustering computation extremely expensive. In this paper we describe of GPU kernel implementation of the most computationally expensive module in the Amplicon Noise software package, SeqDist. With our GPU workstation (Intel Core i7 980 @ 3.33GHz + 3 x NVIDIA Tesla C2070) and a typical 454 dataset, our implementation achieves a 8.6X (CUDA-SeqDist) speedup with a single GPU when compared with a 12 MPI ranks of the original tools running on the CPU alone. With three GPUs, we achieve a 2.1X further speedup over the single GPU version, yielding a total speedup of 18.3X. We measure the throughput of our kernel to be 1.4 giga floating-point cell updates per second(GFCUPS) with a single GPU and 2.9 GFCUPS with 3 GPUs, where GFCUPS refers to the unique method by which the score matrix must be updated in the specialized alignment algorithm used in Amplicon Noise.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

238 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1453 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: