8532

Dataflow-driven GPU performance projection for multi-kernel transformations

Jiayuan Meng, Vitali A. Morozov, Venkatram Vishwanath, Kalyan Kumaran
Argonne National Laboratory
International Conference on High Performance Computing, Networking, Storage and Analysis (SC ’12), 2012
@inproceedings{meng2012dataflow,

   title={Dataflow-driven GPU performance projection for multi-kernel transformations},

   author={Meng, J. and Morozov, V.A. and Vishwanath, V. and Kumaran, K.},

   booktitle={Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},

   pages={82},

   year={2012},

   organization={IEEE Computer Society Press}

}

Download Download (PDF)   View View   Source Source   

390

views

Applications often have a sequence of parallel operations to be offloaded to graphics processors; each operation can become an individual GPU kernel. Developers typically explore a variety of transformations for each kernel. Furthermore, it is well known that efficient data management is critical in achieving high GPU performance and that "fusing" multiple kernels into one may greatly improve data locality. Doing so, however, requires transformations across multiple, potentially nested, parallel loops; at the same time, the original code semantics and data dependency must be preserved. Since each kernel may have distinct data access patterns, their combined dataflow can be nontrivial. As a result, the complexity of multi-kernel transformations often leads to significant effort with no guarantee of performance benefits. This paper proposes a dataflow-driven analytical framework to project GPU performance for a sequence of parallel operations. Users need only provide CPU code skeletons for a sequence of parallel loops. The framework can then automatically identify opportunities for multi-kernel transformations and data management. It is also able to project the overall performance without implementing GPU code or using physical hardware.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1241 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: