ValuePack: value-based scheduling framework for CPU-GPU clusters

Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, Srimat Chakradhar
Dept. of Computer Science and Engg., The Ohio State University, Columbus, Ohio
International Conference on High Performance Computing, Networking, Storage and Analysis (SC’12), 2012

   title={ValuePack: value-based scheduling framework for CPU-GPU clusters},

   author={Ravi, V.T. and Becchi, M. and Agrawal, G. and Chakradhar, S.},

   booktitle={Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},



   organization={IEEE Computer Society Press}


Download Download (PDF)   View View   Source Source   



Heterogeneous computing nodes are becoming commonplace today, and recent trends strongly indicate that clusters, supercomputers, and cloud environments will increasingly host more heterogeneous resources, with some being massively parallel (e.g., GPU). With such heterogeneous environments becoming common, it is important to revisit scheduling problems for clusters and cloud environments. In this paper, we formulate and address the problem of value-driven scheduling of independent jobs on heterogeneous clusters, which captures both the urgency and relative priority of jobs. Our overall scheduling goal is to maximize the aggregate value or yield of all jobs. Exploiting the portability available from the underlying programming model, we propose four novel scheduling schemes that can automatically and dynamically map jobs onto heterogeneous resources. Additionally, to improve the utilization of massively parallel resources, we also propose heuristics to automatically decide when and which jobs can share a single resource.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

244 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1474 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: