8538

Early evaluation of directive-based GPU programming models for productive exascale computing

Seyong Lee, Jeffrey S. Vetter
Oak Ridge National Laboratory
International Conference on High Performance Computing, Networking, Storage and Analysis (SC’12), 2012
@inproceedings{lee2012early,

   title={Early evaluation of directive-based GPU programming models for productive exascale computing},

   author={Lee, S. and Vetter, J.S.},

   booktitle={Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},

   pages={23},

   year={2012},

   organization={IEEE Computer Society Press}

}

Download Download (PDF)   View View   Source Source   

472

views

Graphics Processing Unit (GPU)-based parallel computer architectures have shown increased popularity as a building block for high performance computing, and possibly for future Exascale computing. However, their programming complexity remains as a major hurdle for their widespread adoption. To provide better abstractions for programming GPU architectures, researchers and vendors have proposed several directive-based GPU programming models. These directive-based models provide different levels of abstraction, and required different levels of programming effort to port and optimize applications. Understanding these differences among these new models provides valuable insights on their applicability and performance potential. In this paper, we evaluate existing directive-based models by porting thirteen application kernels from various scientific domains to use CUDA GPUs, which, in turn, allows us to identify important issues in the functionality, scalability, tunability, and debuggability of the existing models. Our evaluation shows that directive-based models can achieve reasonable performance, compared to hand-written GPU codes.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: