Auto-tuning on the macro scale: high level algorithmic auto-tuning for scientific applications

Cy P Chan
Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
Massachusetts Institute of Technology, 2012

   title={Auto-tuning on the macro scale: high level algorithmic auto-tuning for scientific applications},

   author={Chan, C.P.},


   school={Massachusetts Institute of Technology}


Download Download (PDF)   View View   Source Source   



In this thesis, we describe a new classification of auto-tuning methodologies spanning from low-level optimizations to high-level algorithmic tuning. This classification spectrum of auto-tuning methods encompasses the space of tuning parameters from low-level optimizations (such as block sizes, iteration ordering, vectorization, etc.) to high-level algorithmic choices (such as whether to use an iterative solver or a direct solver). We present and analyze four novel auto-tuning systems that incorporate several techniques that fall along a spectrum from the low-level to the high-level: i) a multiplatform, auto-tuning parallel code generation framework for generalized stencil loops, ii) an auto-tunable algorithm for solving dense triangular systems, iii) an auto-tunable multigrid solver for sparse linear systems, and iv) tuned statistical regression techniques for fine-tuning wind forecasts and resource estimations to assist in the integration of wind resources into the electrical grid. We also include a project assessment report for a wind turbine installation for the City of Cambridge to highlight an area of application (wind prediction and resource assessment) where these computational auto-tuning techniques could prove useful in the future.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

338 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: