8684

GPUs: An Oasis in the Supercomputing Desert

Waseem Kamleh
University of Adelaide, Australia
arXiv:1212.4573 [hep-lat] (19 Dec 2012)
@article{2012arXiv1212.4573K,

   author={Kamleh}, W.},

   title={"{GPUs: An Oasis in the Supercomputing Desert}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1212.4573},

   primaryClass={"hep-lat"},

   keywords={High Energy Physics – Lattice},

   year={2012},

   month={dec},

   adsurl={http://adsabs.harvard.edu/abs/2012arXiv1212.4573K},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

497

views

A novel metric is introduced to compare the supercomputing resources available to academic researchers on a national basis. Data from the supercomputing Top 500 and the top 500 universities in the Academic Ranking of World Universities (ARWU) are combined to form the proposed "500/500" score for a given country. Australia scores poorly in the 500/500 metric when compared with other countries with a similar ARWU ranking, an indication that HPC-based researchers in Australia are at a relative disadvantage with respect to their overseas competitors. For HPC problems where single precision is sufficient, commodity GPUs provide a cost-effective means of quenching the computational thirst of otherwise parched Lattice practitioners traversing the Australian supercomputing desert. We explore some of the more difficult terrain in single precision territory, finding that BiCGStab is unreliable in single precision at large lattice sizes. We test the CGNE and CGNR forms of the conjugate gradient method on the normal equations. Both CGNE and a modified form of CGNR (with restarts) provide reliable convergence for quark propagator calculations in single precision.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474790271
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474790271
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => p612aKu9uSZldUlpX4EtjLws1+8=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1996 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: