8686

Track finding in ATLAS using GPUs

J. Mattmann and C. Schmitt
Institut fur Physik, Johannes Gutenberg-Universitat Mainz, Staudingerweg 7, D – 55128 Mainz
Journal of Physics: Conference Series 396 (2012) 022035, 2012
@article{1742-6596-396-2-022035,

   author={J Mattmann and C Schmitt},

   title={Track finding in ATLAS using GPUs},

   journal={Journal of Physics: Conference Series},

   volume={396},

   number={2},

   pages={022035},

   url={http://stacks.iop.org/1742-6596/396/i=2/a=022035},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

416

views

The reconstruction and simulation of collision events is a major task in modern HEP experiments involving several ten thousands of standard CPUs. On the other hand the graphics processors (GPUs) have become much more powerful and are by far outperforming the standard CPUs in terms of floating point operations due to their massive parallel approach. The usage of these GPUs could therefore significantly reduce the overall reconstruction time per event or allow for the usage of more sophisticated algorithms. In this paper the track finding in the ATLAS experiment will be used as an example on how the GPUs can be used in this context: the implementation on the GPU requires a change in the algorithmic flow to allow the code to work in the rather limited environment on the GPU in terms of memory, cache, and transfer speed from and to the GPU and to make use of the massive parallel computation. Both, the specific implementation of parts of the ATLAS track reconstruction chain and the performance improvements obtained will be discussed.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

193 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1329 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: