8700

Algorithmic Skeleton Framework for the Orchestration of GPU Computations

Ricardo Jorge dos Santos Marques
Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa
Universidade Nova de Lisboa, 2012
@article{marques2012algorithmic,

   title={Algorithmic skeleton framework for the orchestration of GPU computations},

   author={Marques, R.J.S.},

   year={2012},

   publisher={Faculdade de Ci{^e}ncias e Tecnologia}

}

Download Download (PDF)   View View   Source Source   

435

views

The Graphics Processing Unit (GPU) is gaining popularity as a co-processor to the Central Processing Unit (CPU), due to its ability to surpass the latter’s performance in certain application fields. Nonetheless, harnessing the GPU’s capabilities is a non-trivial exercise that requires good knowledge of parallel programming. Thus, providing ways to extract such computational power has become an emerging research topic. In this context, there have been several proposals in the field of GPGPU (Generalpurpose Computation on Graphics Processing Unit) development. However, most of these still offer a low-level abstraction of the GPU computing model, forcing the developer to adapt application computations in accordance with the SPMD model, as well as to orchestrate the low-level details of the execution. On the other hand, the higher-level approaches have limitations that prevent the full exploitation of GPUs when the purpose goes beyond the simple offloading of a kernel. To this extent, our proposal builds on the recent trend of applying the notion of algorithmic patterns (skeletons) to GPU computing. We propose Marrow, a high-level algorithmic skeleton framework that expands the set of skeletons currently available in this field. Marrow’s skeletons orchestrate the execution of OpenCL computations and introduce optimizations that overlap communication and computation, thus conjoining programming simplicity with performance gains in many application scenarios. Additionally, these skeletons can be combined (nested) to create more complex applications. We evaluated the proposed constructs by confronting them against the comparable skeleton libraries for GPGPU, as well as against hand-tuned OpenCL programs. The results are favourable, indicating that Marrow’s skeletons are both flexible and efficient in the context of GPU computing.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

167 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1275 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: