8750

Portable Mapping of Data Parallel Programs to OpenCL for Heterogeneous Systems

Dominik Grewe, Zheng Wang, Michael F.P. O’Boyle
School of Informatics, University of Edinburgh
International Symposium on Code Generation and Optimization (CGO), 2013
@article{grewe2013portable,

   title={Portable Mapping of Data Parallel Programs to OpenCL for Heterogeneous Systems},

   author={Grewe, D. and Wang, Z. and O’Boyle, M.F.P.},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

1140

views

General purpose GPU based systems are highly attractive as they give potentially massive performance at little cost. Realizing such potential is challenging due to the complexity of programming. This paper presents a compiler based approach to automatically generate optimized OpenCL code from data-parallel OpenMP programs for GPUs. Such an approach brings together the benefits of a clear high level language (OpenMP) and an emerging standard (OpenCL) for heterogeneous multi-cores. A key feature of our scheme is that it leverages existing transformations, especially data transformations, to improve performance on GPU architectures and uses predictive modeling to automatically determine if it is worthwhile running the OpenCL code on the GPU or OpenMP code on the multi-core host. We applied our approach to the entire NAS parallel benchmark suite and evaluated it on two distinct GPU based systems: Core i7/NVIDIA GeForce GTX 580 and Core i7/AMD Radeon 7970. We achieved average (up to) speedups of 4.51x and 4.20x (143x and 67x) respectively over a sequential baseline. This is, on average, a factor 1.63 and 1.56 times faster than a hand-coded, GPU-specific OpenCL implementation developed by independent expert programmers.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Portable Mapping of Data Parallel Programs to OpenCL for Heterogeneous Systems, 5.0 out of 5 based on 1 rating

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475137725
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475137725
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => FsO45OrUdnHoakxNTUGgTFO5Wjw=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2000 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: