8754

A Multi-GPU Programming Library for Real-Time Applications

Sebastian Schaetz, Martin Uecker
BiomedNMR Forschungs GmbH at the Max Planck Institute for biophysical Chemistry, Goettingen
arXiv:1301.1215 [cs.DC], (7 Jan 2013)
@article{2013arXiv1301.1215S,

   author={Schaetz}, S. and {Uecker}, M.},

   title={"{A Multi-GPU Programming Library for Real-Time Applications}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1301.1215},

   primaryClass={"cs.DC"},

   keywords={Computer Science – Distributed, Parallel, and Cluster Computing, Computer Science – Performance},

   year={2013},

   month={jan},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1301.1215S},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

1163

views

We present MGPU, a C++ programming library targeted at single-node multi-GPU systems. Such systems combine disproportionate floating point performance with high data locality and are thus well suited to implement real-time algorithms. We describe the library design, programming interface and implementation details in light of this specific problem domain. The core concepts of this work are a novel kind of container abstraction and MPI-like communication methods for intra-system communication. We further demonstrate how MGPU is used as a framework for porting existing GPU libraries to multi-device architectures. Putting our library to the test, we accelerate an iterative non-linear image reconstruction algorithm for real-time magnetic resonance imaging using multiple GPUs. We achieve a speed-up of about 1.7 using 2 GPUs and reach a final speed-up of 2.1 with 4 GPUs. These promising results lead us to conclude that multi-GPU systems are a viable solution for real-time MRI reconstruction as well as signal-processing applications in general.
VN:F [1.9.22_1171]
Rating: 3.0/5 (2 votes cast)
A Multi-GPU Programming Library for Real-Time Applications, 3.0 out of 5 based on 2 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1480816687
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1480816687
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => yZxZuYiM7n4SN5A7nEfj+Bn/ycE=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2079 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: