8824

The PEPPHER Composition Tool: Performance-Aware Dynamic Composition of Applications for GPU-based Systems

Usman Dastgeer, Lu Li, Christoph Kessler
PELAB, Department of Computer and Information Science, Linkoping University, Sweden
International Workshop on Multi-Core Computing Systems (MuCoCoS 2012), 2012
@inproceedings{dastgeer2012peppher,

   title={The PEPPHER Composition Tool: Performance-Aware Dynamic Composition of Applications for GPU-based Systems},

   author={Dastgeer, U. and Li, L. and Kessler, C.},

   booktitle={Proc. 2012 Int. Workshop on Multi-Core Computing Systems (MuCoCoS 2012)},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

361

views

The PEPPHER component model defines an environment for annotation of native C/C++ based components for homogeneous and heterogeneous multicore and manycore systems, including GPU and multi-GPU based systems. For the same computational functionality, captured as a component, different sequential and explicitly parallel implementation variants using various types of execution units might be provided, together with metadata such as explicitly exposed tunable parameters. The goal is to compose an application from its components and variants such that, depending on the run-time context, the most suitable implementation variant will be chosen automatically for each invocation. – We describe and evaluate the PEPPHER composition tool, which explores the application’s components and their implementation variants, generates the necessary low-level code that interacts with the runtime system, and coordinates the native compilation and linking of the various code units to compose the overall application code. With several applications, we demonstrate how the composition tool provides a high-level programming front-end while effectively utilizing the task-based PEPPHER runtime system (StarPU) underneath.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

124 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1180 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: