8845

Automatic Parallelization for GPUs

Thomas B. Jablin
Princeton University
Princeton University, 2013
@phdthesis{jablin2013automatic,

   title={Automatic Parallelization for GPUs},

   author={Jablin, T.B.},

   year={2013},

   school={Princeton University}

}

Download Download (PDF)   View View   Source Source   

530

views

GPUs are flexible parallel processors capable of accelerating real applications. To exploit them, programmers rewrite programs in new languages using intimate knowledge of the underlying hardware. This is a step backwards in abstraction and ease of use from sequential programming. When implementing sequential applications, programmers focus on high-level algorithmic concerns, allowing the compiler to target the peculiarities of specific hardware. Automatic parallelization can return ease of use and hardware abstraction to programmers. This dissertation presents techniques for automatically parallelizing ordinary sequential C codes for GPUs using DOALL and pipelined parallelization techniques. The key contributions include: the first automatic data management and communication optimization framework for GPUs and the first automatic pipeline parallelization system for GPUs. Combining these two contributions with an automatic DOALL parallelization yields the first fully automatic parallelizing compiler for GPUs.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1218 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: